SELF-SIMILAR SOLUTION OF THE NAVIER-STOKES
EQUATIONS FOR A COMPLETELY IONIZED HYDROGEN
PLASMA (THE PLANE PISTON PROBLEM)

R. G. Luk'yanova and S. I. Fadeev

The self-similar motion of a completely ionized hydrogen plasma is considered in the two~
temperature hydrodynamic approximation, i.e., we consider the plane piston problem and the
problem on energy release at a fixed wall. Results obtained by numerical integration of the
relevant system of ordinary differential equations are quoted.

The undisturbed medium is assumed to be a dense, completely ionized hydrogen plasma at rest, with
density PN and zero electron and ion temperatures. We consider the plane piston problem for a given heat
regime. The piston motion and the heat regime are chosen in such a way that self-similar motion of the
medium results [1]. We neglect the role of radiation and assume a zero magnetic field.

1. The perturbations of a dense completely ionized plasma are commonly described by a system of
Navier-Stokes equations, the general form of which is given in [2], as an example. Under the assumption
of strict electrical neutrality, an ion charge z = 1, and a ratio of specific heats y = Cp/CV /3, the system
for uniform, plane, unestablished motion can be written as
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Here, t is time; r is a linear coordinate; u is the velocity of the ion gas, equal to the velocity of the
electron gas; pg and p; are the pressures of the electron and ion gases; and k;, ky,, and ky are constant
factors, belonging, respectively, to the coefficient of ion viscosity, the coefficient of electron heat conduc-
tion, and the energy exchange between the electrons and ions. The dependences of k“ » ky, and kq on the
atomic constants are given by
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Here, mj is the ion mass; my is the electron mass; e is the elementary charge, and A is the Coulomb loga-
rithm. Both components of the medium, with ion temperature 8; and electron temperature 6, are assumed
to satisfy the equation of state of a perfect gas, i.e.,

p; = pReiv Pe = pRG er R=Fk/ m; (153)
where k is Boltzmann's constant, v

Consider the case in which the piston motion and the heat energy release at the piston are specified by

Ty (1) = At",  E (t) = Bt° (1.4)
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The constants defining the solution of the problem have the following dimensions:

loy] = ML3, [l = LT™, [Bl= MT @
(ko] = (k] = ML™T4, k) = M LT

If we now require that only two of these constants have independent dimensionalities (say py and A),
we find that

n=*%, o =2 (1.5)

In case (1.5), therefore, the motion of the medium is self-similar; and this latter may be used to
transform (1.1) into a system of ordinary differential equations [1].

Notice that, in problems of plane (v = 1), cylindrical (v = 2), and spherical (v = 3) pistons, with heat
regimes of the {1.4) type, the motion is self-gimilar if

Ty (t) = At%, E (t) — Bt%(vm)—z

In particular, when A = 0 we obtain the problem concerning energy release at a point. In addition, the
similarity property is easily seen to be retained with other values of z and v.

2. As distinct from the motion of an ordinary viscous gas, in which viscosity and heat conduction are
equally important factors (the Prandtl number is of order unity), in a high-temperature completely ionized
plasma the Prandtl number becomes much smaller than unity because of the large electron heat conduction,
and unless we are interested in the structure of the viscous jump, the influence of the ion viscosity can be
neglected. Here, the continuous solution of system (1.1) transforms into a discontinuous solution with a so~
called "isoelectron-thermal jump” [3]. It is assumed henceforth that the ion gas is nonviscous.

For convenience, after putting k].t = 0 in (1.1), we rewrite the system in Lagrangian variables (x, 1),
where x is the mass coordinate:
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Here, W is the heat flux, determined by the electron heat conduction
vy = Rk, K = 9.48R%/x,

Since the electron heat conduction is nonlinear, the solution of the problem takes the form, as in [4],
of a temperature wave, traveling with finite velocity. Bearing this circumstance in mind, the initial and
boundary conditions at t = 0, x > 0 and at the leading front of the disturbance with x = Xy, t > 0, are given
by

p=pn, u=0;,=0,= W=0 (2.2)

1

and at the piston with x =0, t > 0 by

u="%, Ath, W=2Bt o u=*%4, At §,= T " (2.9)

In the notation of [4], the expressions for the transformation of system (2.1) may be written as

@, t) = o (S) R ht'h, B (%, £) = fo (S) Tt
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8(S) R, T %, S = @Ry Ty 2~ (2.4)
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After reduction of the transformed system to the normal form, we obtain
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while it follows from conditions (2.2) and (2.3) that
6=6N7 a:ﬁe—;ﬁi:fe:fi:(p:o when §= sy (2»6)

a=a0a,, ¢=¢, when s=0

where s = sy and s = 0 characterize, respectively, the position of the leading front of the disturbance and
the position of the piston, and
O = Ry Ty, oy =43 ARTTh, @y = 2BRYmy Ty

The following expression, connecting the linear coordinate with the similarity variables, may be ob-
tained from the equation of continuity:

(o, ) = (4 +Sa) RATSen (2.7
This implies, in particular, that the movement of the leading front of the disturbance is described by
() = g_N RUCT gt (2.8)
N

3. It is clear from the boundary conditions (2.6) that s = sy is a singularity of system (2.5). Let us
require that the transformation

T=(sy — s)Vr
where h is an integer greater than unity, is such that the required functions can be written in the neighbor-

hood of s = sy as series in integral powers of 7. Retaining only the principal terms in theexpansions, the
asymptotic behavior of the functions are found to be given by
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Expressions (3.1) for @, B4, fo, and ¢, are the same as the asymptotic expressions for o, B, f,and
@ in the neighborhood of the leading front of a disturbance obtained in [4], when solving the self-similar
problem on a plane piston in the single~component medium, provided that n = 4 /3 and that the thermal
conductivity is proportional to the temperature to the power 5 /2

With small values of sy—s, the determinant A of system (2.5) is positive, while at the piston, with
s =0, we have A < 0. This implies (the proof is just the same as in [4]) that the solution of system (2.5)
under boundary conditions (2.6) cannot be continued continuously from s = sy to s = 0. Here, we exclude
the case in which at some point s at which A = 0 the right-hand side of the first equation of system (2.5),
and hence also, the right-hand side of the second equation of (2,5), vanishes.
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With regard to the point s = 0, we merely observe that, when fe(O) > 0, the singularity at this point
can be eliminated.

4. Let the position of the surface of discontinuity of the hydrodynamic variables be characterized by
the coordinate xy, which corresponds to the value s, of the dimensionless variable s. The conditions on the
isoelectron-thermal jump may be written as [3]
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Here and below, subscripts 1 and 2 are assigned to function values on the "leading" and ™trailing"
front of the surface of discontinuity; dro/dt is the jump propagation speed, and

3 (4.2)

! s
ro(t) = _(% + = 0&) RUT et

The laws of conservation of the mass and momentum flows at the jump have the usual form. In the
law of conservation of the energy flow, we take account of the fact that 6¢y = 6, and that the compression
of the electron gas is isothermal.

Applying transformation (2.4) to (4.1), we can now express the quantities behind the jump in terms of

&= p0;/0,
As a result, we get
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The value of ¢ is found by solving the transcendental equation
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Fig. 5 It may easily be shown that only one root of (4.4) lies between

g and 1.

5. Numerical integration of system (2.5) under boundary conditions (2.6) and conditions (4.3) on the
jump was carried out by Luk'yanov,

The values of sy and s, were fixed in some way and the Cauchy problem solved with the initial data,
at a point where the asymptotic representation (3.1) still holds. The functions sy and s; are the sums of the
squares of the deviations of the given boundary conditions at the point s = 0 from the values obtained by
solving the Cauchy problem. By using the method of fastest descent, we then found the values of sy and s,
at which the sum of squares of the deviations vanished.

The following typical cases were considered: a) a piston with a heat supply [¢y = 69.91, 05 = 2.572
(Fig. 1)1, b) an adiabatic piston [¢y = 0, o= 3,770 (Fig. 2)], c) a piston with a heat drain [g, = ~63.55, ¢ =
4,308 (Fig. 3)], and d) the problem of energy release at a fixed wall gy = 100.9, @y =0 (Fig. 41,

The corresponding ¢{s) distributions are shown in Fig. 5; curves 1-4 correspond, respectively, to
@y = 100.9, 69.91, 0.0;63.55; it was assumed throughout that éy = 1,

It can be seen from the curves that the behavior of the hydrodynamic quantities is entirely typical of
the motions considered in the electron-ion medium. A few points may be noticed. In the piston problem the
ion temperature is greater than the electron temperature in the region immediately behind the jump, where-
as the reverse is true in the problem of energy release at a fixed wall. The greater the energy supplied to
the electron gas at the piston, the smaller the ion temperature jump. Finally, in all the cases considered,
only flows corresponding to a temperature wave on the first kind [4] were obtained.
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